65 research outputs found

    A Stable Fountain Code Mechanism for Peer-to-Peer Content Distribution

    Full text link
    Most peer-to-peer content distribution systems require the peers to privilege the welfare of the overall system over greedily maximizing their own utility. When downloading a file broken up into multiple pieces, peers are often asked to pass on some possible download opportunities of common pieces in order to favor rare pieces. This is to avoid the missing piece syndrome, which throttles the download rate of the peer-to-peer system to that of downloading the file straight from the server. In other situations, peers are asked to stay in the system even though they have collected all the file's pieces and have an incentive to leave right away. We propose a mechanism which allows peers to act greedily and yet stabilizes the peer-to-peer content sharing system. Our mechanism combines a fountain code at the server to generate innovative new pieces, and a prioritization for the server to deliver pieces only to new peers. While by itself, neither the fountain code nor the prioritization of new peers alone stabilizes the system, we demonstrate that their combination does, through both analytical and numerical evaluation.Comment: accepted to IEEE INFOCOM 2014, 9 page

    On the Benefit of Information Centric Networks for Traffic Engineering

    Full text link
    Current Internet performs traffic engineering (TE) by estimating traffic matrices on a regular schedule, and allocating flows based upon weights computed from these matrices. This means the allocation is based upon a guess of the traffic in the network based on its history. Information-Centric Networks on the other hand provide a finer-grained description of the traffic: a content between a client and a server is uniquely identified by its name, and the network can therefore learn the size of different content items, and perform traffic engineering and resource allocation accordingly. We claim that Information-Centric Networks can therefore provide a better handle to perform traffic engineering, resulting in significant performance gain. We present a mechanism to perform such resource allocation. We see that our traffic engineering method only requires knowledge of the flow size (which, in ICN, can be learned from previous data transfers) and outperforms a min-MLU allocation in terms of response time. We also see that our method identifies the traffic allocation patterns similar to that of min-MLU without having access to the traffic matrix ahead of time. We show a very significant gain in response time where min MLU is almost 50% slower than our ICN-based TE method

    Scalable Routing Easy as PIE: a Practical Isometric Embedding Protocol (Technical Report)

    Get PDF
    We present PIE, a scalable routing scheme that achieves 100% packet delivery and low path stretch. It is easy to implement in a distributed fashion and works well when costs are associated to links. Scalability is achieved by using virtual coordinates in a space of concise dimensionality, which enables greedy routing based only on local knowledge. PIE is a general routing scheme, meaning that it works on any graph. We focus however on the Internet, where routing scalability is an urgent concern. We show analytically and by using simulation that the scheme scales extremely well on Internet-like graphs. In addition, its geometric nature allows it to react efficiently to topological changes or failures by finding new paths in the network at no cost, yielding better delivery ratios than standard algorithms. The proposed routing scheme needs an amount of memory polylogarithmic in the size of the network and requires only local communication between the nodes. Although each node constructs its coordinates and routes packets locally, the path stretch remains extremely low, even lower than for centralized or less scalable state-of-the-art algorithms: PIE always finds short paths and often enough finds the shortest paths.Comment: This work has been previously published in IEEE ICNP'11. The present document contains an additional optional mechanism, presented in Section III-D, to further improve performance by using route asymmetry. It also contains new simulation result

    Content Based Traffic Engineering in Software Defined Information Centric Networks

    Full text link
    This paper describes a content centric network architecture which uses software defined networking principles to implement efficient metadata driven services by extracting content metadata at the network layer. The ability to access content metadata transparently enables a number of new services in the network. Specific examples discussed here include: a metadata driven traffic engineering scheme which uses prior knowledge of content length to optimize content delivery, a metadata driven content firewall which is more resilient than traditional firewalls and differentiated treatment of content based on the type of content being accessed. A detailed outline of an implementation of the proposed architecture is presented along with some basic evaluation

    The Price of Updating the Control Plane in Information-Centric Networks

    Full text link
    We are studying some fundamental properties of the interface between control and data planes in Information-Centric Networks. We try to evaluate the traffic between these two planes based on allowing a minimum level of acceptable distortion in the network state representation in the control plane. We apply our framework to content distribution, and see how we can compute the overhead of maintaining the location of content in the control plane. This is of importance to evaluate content-oriented network architectures: we identify scenarios where the cost of updating the control plane for content routing overwhelms the benefit of fetching a nearby copy. We also show how to minimize the cost of this overhead when associating costs to peering traffic and to internal traffic for operator-driven CDNs.Comment: 10 pages, 12 figure
    • …
    corecore